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Abstract. Recent developments for Semi-Supervised Object Detection
(SSOD) have shown the promise of leveraging unlabeled data to improve
an object detector. However, thus far these methods have assumed that
the unlabeled data does not contain out-of-distribution (OOD) classes,
which is unrealistic with larger-scale unlabeled datasets. In this paper,
we consider a more practical yet challenging problem, Open-Set Semi-
Supervised Object Detection (OSSOD). We first find the existing SSOD
method obtains a lower performance gain in open-set conditions, and this
is caused by the semantic expansion, where the distracting OOD objects
are mispredicted as in-distribution pseudo-labels for the semi-supervised
training. To address this problem, we consider online and offline OOD
detection modules, which are integrated with SSOD methods. With the
extensive studies, we found that leveraging an offline OOD detector
based on a self-supervised vision transformer performs favorably against
online OOD detectors due to its robustness to the interference of pseudo-
labeling. In the experiment, our proposed framework effectively addresses
the semantic expansion issue and shows consistent improvements on
many OSSOD benchmarks, including large-scale COCO-OpenImages. We
also verify the effectiveness of our framework under different OSSOD
conditions, including varying numbers of in-distribution classes, different
degrees of supervision, and different combinations of unlabeled sets.

1 Introduction

The success of deep neural networks relies on large collections of labeled data,
although creating such large-scale datasets is expensive and time-consuming.
The recent development of successful Semi-Supervised Learning (SSL) methods
alleviates this requirement by making better use of unlabeled data, narrowing
the performance gap between the SSL models and the fully-supervised model.

Inspired by SSL methods for image classification [1,20,35,39,48,46,10,13,36],
recent works on semi-supervised object detection (SSOD) [37,25,49,38] have
applied the self-training method, which trains the model with the pseudo-labels
of the unlabeled data. These works often consider a scenario where the labeled set
is randomly sampled from a dataset (e.g., MS-COCO [23]) and use the remaining
images as the unlabeled set. This implicitly assumes the label spaces of labeled
and unlabeled data are identical. However, this closed-set assumption is unlikely
⋆ Work done partially while interning at Meta.
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(a) (b)
Fig. 1. (a) Open-Set Semi-Supervised Object Detection aims to learn an in-distribution
object detector with a number of labeled images and another set of unconstrained/open-
set unlabeled images. The objects appearing in the labeled data are defined as in-
distribution (ID) objects, while some objects in the open-set unlabeled data are out-of-
distribution (OOD) objects, which are unseen, unknown, and undefined in the labeled
set. (b) While most of the self-training methods [36,25] rely on thresholding for filtering
unreliable pseudo-labels, some OOD objects in unlabeled images are mispredicted as
inlier objects with high confidence. These OOD objects are then mis-labeled, trained
on, and lead to worse performance.

to happen in real-world situations, where unlabeled images collected in the wild
might contain out-of-distribution (OOD) objects, which are unseen, undefined,
and unknown in the available labeled set.

We are thus interested in a more practical yet challenging problem, Open-
Set Semi-Supervised Object Detection (OSSOD), which aims to leverage the
unconstrained unlabeled images (i.e., images containing unseen OOD objects),
to improve an object detector trained with the available labeled data as shown
in Figure 1a. When adding unlabeled data containing open-set categories, we
observe that the existing successful SSOD method leads to a lower performance
gain or even degraded results. This is different from the common belief that SSL
methods can benefit from using more unlabeled data. We attribute the above
phenomena to the semantic expansion issue, where OOD objects are mispredicted
as in-distribution objects with high confidence and misused as pseudo-labels with
confidence thresholding (Figure 1b).

To eliminate the detrimental effect of OOD samples, we propose to add an
additional OOD filtering process into the existing SSOD training pipeline. More
concretely, we first consider online OOD detectors to perform OOD filtering. An
online OOD detector is a prediction head/branch we straightforwardly add on
the object detector using existing OOD methods [12,21,14,41]. However, we find
that such methods cannot produce satisfactory results due to interference with
other tasks, e.g., bounding box localization and box classification (See Section 4.2
for further discussion). In order to address this, we propose a simple but effective
strategy that uses an offline OOD detection module, which is disentangled
from the architecture of the object detector. This OOD detector is based on a
self-supervised DINO [2] model, and it provides several advantages. First, the
pre-training of DINO does not require label annotations, so it is suitable for
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the low-label setting and alleviates the concern of limited amounts of labels for
OOD detection tasks. Secondly, it is more effective in detecting OOD objects
in the pseudo-labels compared with other (online) OOD methods as shown in
Section 5.2, and this eliminates the detrimental effect of OOD samples for OSSOD
tasks. Lastly, since the architecture of OOD detector and object detector are
independent, the training of the two models can be done separately and prevent
interference as we observed in online OOD detectors.

In our experiments, we first provide a systematic analysis between several
OOD detection methods, and our results suggest that offline methods show
consistent improvements over the online detection methods. We also show that
using the offline OOD detector can filter the OOD objects in pseudo-labels and
consistently improve against the existing SSOD methods under different open-set
scenarios, including under different combination of unlabeled sets, varying number
of in-distribution (ID) classes, and different number of images. We also find that
using the pseudo-labels generated from our framework is even more effective than
using the ground-truth labels provided in OpenImages (see Section 5.3).

We highlight the contributions of this paper as follows:

– To the best of our knowledge, we are the first to address the open-set semi-
supervised object detection tasks, and we analyze the limitation of existing
SSOD methods on OSSOD tasks.

– We identify the challenges in designing OOD detection in OSSOD tasks,
present online and offline OOD detectors, and provide a systematic comparison
between these two modules.

– Through our extensive experiments, we demonstrate that an offline OOD
detector can effectively remove OOD objects in pseudo-labels, and this leads
to a significant improvements under different OSSOD scenarios, including
a varying number of ID/OOD classes, different degrees of supervision, and
different scales of datasets.

2 Related Work

Open-set semi-supervised object detection focuses on improving an in-distribution
object detector with in-the-wild unlabeled data and preventing the detrimental
effects caused by distracting OOD objects in a more practical semi-supervised
setup. This task is different from the existing works on open-vocabulary/open-
world object detection [47,9,33,50,18,17,16], where the goal is to improve the
recall and accuracy of novel/OOD objects.
Semi-Supervised Object Detection. Recent successful methods on semi-
supervised learning for image classification have applied various data augmenta-
tion and consistency regularization on unlabeled data [1,20,35,39,48,46,10,13,36].
These techniques have also promoted the development of semi-supervised learning
in object detection tasks. For example, several works [37,25,49,38] apply the self-
training method, which is based on the Teacher-Student framework. For example,
STAC [37] uses the labeled data to train the Teacher, which generates pseudo-
labels to supervise the Student model. To refine the quality of pseudo-labels,
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existing works propose several techniques, including exponential moving average
(EMA) [49,43,25,44], co-rectify mechanism [49], replacing hard pseudo-labels
with soft pseudo-labels [38], and addressing class imbalance in pseudo-labels [25].
While promising results have been made, existing SSOD works usually experiment
on datasets where the labeled and unlabeled sets have the same object categories.
We are interested in a more challenging scenario, where some objects in the
unlabeled set are novel and never appear in the labeled set.

Out-of-Distribution Detection. Out-of-distribution (OOD) classes are object
categories that do not appear in the training label space and are not known
a-priori, and OOD detection, which plays a vital role in OSSOD tasks, is a binary
classification problem that decides whether a sample is an ID or OOD. Early
works use different scoring functions to estimate the likelihood of a sample being
OOD, including maximum softmax probability (MSP) [11,22] and Mahalanobis
distance [21]. Another line of works [12,24,28] exploit large sets of OOD samples
during training and they generally achieve better performance on detecting the
outlier objects. There are also several generative-based methods [52,30,32,29] for
OOD detection tasks, though it is difficult and prohibitively challenging to apply
them on large-scale semi-supervised object detection tasks. Among the existing
OOD works, Fort et al. [7] shows state-of-the-art performance on OOD detection
by simply fine-tuning the pretrained vision transformer with the available inlier
data. While promising results have been made on OOD detection tasks, most
of the existing works only experiment on small-scale image classification tasks,
and their extension to the large-scale object detection tasks is not verified. The
only work on OOD detection for object detection is VOS [6], but the interference
with pseudo-labeling in SSOD tasks and computation cost of virtual negative
sampling make it incompatible with the existing SSOD methods.

Open-Set Semi-Supervised Learning. Existing works on open-set semi-
supervised learning focus on image classification tasks [45,34,15,26] or image
generation [8]. For example, MTC [45] estimates the OOD score for each unlabeled
image, and both the network parameters and OOD scores are updated alternately.
Based on the estimated OOD scores, MTC eliminates the OOD samples with
low OOD scores and improves the image classifier in a semi-supervised scenario.
OpenMatch [34] applies a consistency regularization on a one-vs-all classifier,
which is used as an OOD detector to filter the OOD samples during semi-
supervised learning. Despite the promising results, no prior work has addressed
open-set semi-supervised learning for object detection tasks, which have more
challenges than image classification tasks. For instance, in image classification,
each image only contains one single object/class, whereas, in object detection,
each image may contain an arbitrary number of ID/OOD objects, making pseudo-
labeling integrated with OOD detection much more challenging. Additionally,
we also observed that balancing object detection losses against OOD detector is
difficult as we showed in Section 4.2.
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3 Revisiting Semi-Supervised Object Detection

Semi-supervised object detection (SSOD) aims to learn an object detector by using
a set of labeled images Ds = {xs

i ,y
s
i }

Ns
i=1 and unlabeled images Du = {xu

i }
Nu
i=1,

where Ns << Nu. Existing SSOD works [37,25,49,43] apply the self-training
method and have shown significant improvements in this semi-supervised scenario.
The typical strategy of such methods is to generate pseudo-labels (i.e., pseudo-
boxes and the corresponding class labels) of unlabeled images and then train the
object detector using both labeled data and unlabeled data with pseudo-labels.

These works adopt the Teacher-Student framework, where the Teacher model
generates pseudo-labels to train the Student model. Specifically, the Teacher
model takes the weakly-augmented unlabeled data as input and generates the box
predictions, and the bounding boxes with confidence higher than a pre-defined
threshold τ are selected as the pseudo-boxes. The Student then takes as input
the same images with stronger augmentation, and we enforce the consistency
loss Lunsup (i.e., unsupervised loss) between its predictions and the generated
pseudo-labels. To train the Student, we combine both the supervised loss Lsup

and the unsupervised loss Lunsup.

Lssod = Lsup + λLunsup =
∑
i

L(xs
i ,y

s
i ) + λ

∑
i

L(xu
i , ŷ

u
i ), (1)

where λ is the unsupervised loss weight and ŷu
i = δ(ỹu

i ; τ) represents the
pseudo-labels, which are derived from the bounding box prediction ỹu

i after the
confidence thresholding function δ(·) with the pre-defined threshold τ .

To further refine the quality of pseudo-labels, some existing works [38,25,43]
update the Teacher model (θt) by exploiting the model weights of Student (θs)
via the exponential moving average (i.e., θt ← αθt + (1− α)θs).

To verify the effectiveness of the models, existing works often experiment
on a setting where the labeled and unlabeled sets are randomly sampled from
the same dataset. This implicitly assumes the set of object categories are the
same across the labeled and unlabeled sets, and we formalize this setup as the
closed-set SSOD.

4 Open-Set Semi-Supervised Object Detection

While the above self-training methods show promising results in closed-set SSOD,
it restricts the set of object categories in the unlabeled set to be the same as
the labeled set. This setting, however, is less practical since unlabeled datasets
collected in the wild might contain images with novel objects beyond what
were presented in the labeled dataset. We are thus interested in OSSOD, a
more practical yet challenging problem setup, where novel and undefined objects
appear in the unconstrained unlabeled set and are not available in the labeled
set with a limited amount of data.

4.1 Semantic Expansion in Open-Set Scenarios
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(a) (b)
Fig. 2. Illustration of semantic expansion. (a) With the object detector trained with
the labeled data, some OOD objects in unlabeled data are predicted as ID objects,
and solely using the confidence thresholding based on the box score cannot effectively
suppress these OOD objects in pseudo-labels. Using the noisy pseudo-labels in self-
training methods makes the open-set issue become more severe after several training
iterations, and (b) thus the false-positive rate (i.e., percentage of OOD objects predicted
as ID) increases over time.

Fig. 3. Performance comparison be-
tween closed-set and open-set SSOD.
The performance gain of the existing
SSOD method [25] is much smaller in
the open-set conditions. Note that we
randomly select 0.5%/1% data as the
labeled set for both conditions.

We first analyze the existing successful
SSOD work1 on OSSOD tasks. Interest-
ingly, we found it shows limited perfor-
mance gain in the open-set scenario com-
pared with closed-set scenario as shown in
Figure 3. We attribute this lower perfor-
mance gain to semantic expansion as
presented in Figure 2a. To be more spe-
cific, when OOD/novel objects exist in the
unlabeled set, the closed-set classifier (e.g.,
ROIhead classifier in Faster-RCNN [31])
might mispredict these OOD instances as
ID objects with high confidence (a similar
observation is also made recently in prior
works [4,27]). These over-confident and in-
correct OOD instances are prone to be
selected as the pseudo-labels of ID objects
even after confidence thresholding, and using these incorrect OOD pseudo-labels
in the training makes the EMA-updated Teacher mispredict more OOD objects
as ID objects. After the iterative EMA updates between the Teacher and Student,
the semantic discrimination of ID objects is enlarged and incorrectly covers more
OOD objects. This causes the false-positive rate of the OOD pseudo-labels to
increase as the model is trained longer, as presented in Figure 2b.

To address the above issue and improve the performance on OSSOD tasks, we
propose an integrated framework to detect the OOD instances in the pseudo-boxes
and eliminate their detrimental effect during semi-supervised learning. With the

1 As all SoTA SSOD methods [25,38,49,43] use the Teacher-student mechanism and pseudo-labeling
method, we choose UT [25] as an example while our framework is not restricted to it.
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Fig. 4. Illustration of online and offline OOD detection frameworks for OSSOD tasks.
Combined with the existing closed-set SSOD methods, OOD detection aims to remove
the OOD objects in pseudo-labels and prevent semantic expansion in OSSOD. For
the online OOD detector, we add an additional branch on the object detector, but
it suffers from the instability of pseudo-labels used for SSOD and leads to degraded
performance of the object detector. In constrast, the offline OOD detector does not
have these limitations and produce better results on OOD detection due to its nature
of independent model architecture.

goal of deciding whether a sample is an ID or OOD data (i.e., binary classification),
prior works have proposed several OOD detection methods [11,21,24,12,34],
although most of these works only verify the effectiveness of the methods on the
image-level vision tasks. To further advance to OOD detection for instance-level
tasks (e.g., object detection), we consider online and offline OOD detectors in
the following sections.

4.2 Online OOD detection

As illustrated in Figure 4, online OOD detection expands the architecture of
the existing object detector so that it can perform OOD detection in addition
to bounding box classification and localization. One simple way to detect the
OOD objects is to use the maximum softmax probability (MSP) [11] of ROIhead
classifier as an indicator for identifying OOD samples. In a similar spirit, another
way is to apply a range of existing OOD detection methods [11,21,24,12,34,41] and
add an additional OOD branch on the ROIhead. We combine the semi-supervised
object detection loss Lssod as mentioned in Eq. 3 and OOD detection loss Lood

defined in the original works, and we train the model in an end-to-end manner.
However, these online OOD detectors have several limitations in OSSOD

tasks. On the one hand, as presented in Figure 5a, pseudo-labeling used for SSOD
significantly degrades the performance of online OOD detection (we use MSP [11]
as an example), and such a trend is hypothetically caused by the instability
of pseudo-labels (i.e., classification noise in pseudo-labels). On the other hand,
bundling two different tasks (e.g., OOD detection and object detection) in a
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(a) (b)

Fig. 5. (a) Pseudo-labeling used in SSOD degrades the performance of online OOD
detection. (b) Accuracy of an object detector is degraded by adding online OOD
detection, where we create another branch on ROIhead and exploit outlier exposure [12]
to detect OOD samples. Both AUROC and FPR@TNR95 are standard evaluation
metrics for OOD detection (defined in Section 5.2).

shared architecture leads to sub-optimal performance of object detection task
as shown in Figure 5b, making the online OOD detection less favorable to be
applied for OSSOD tasks.

4.3 Offline OOD detection.

To ameliorate the above issues, as shown in Figure 4, we alternatively propose
to use offline OOD detection, where we construct an OOD detector that is
disentangled from the architecture of the object detector and not jointly trained
with the object detector. This framework design provides two advantages: 1) the
offline OOD detector is compatible with any existing SSOD methods [37,49,25,51],
since the offline OOD detector is modularized and independent from the object
detector. 2) Such a framework design alleviates the concern about competing
task objectives between OOD detection and object detection.

To design the offline OOD detector, we exploit the current state-of-the-art
OOD method, which is simple yet effective on image-level OOD tasks. Specifically,
as pointed out by Fort et al. [7], one highly successful method for OOD detection
is to simply fine-tune a pretrained ViT-B [5] with available ID data. Despite its
promising results, pre-training a ViT-B requires ImageNet-21k images and the
corresponding large amount of annotated labels, which is not suitable for our
semi-supervised setting and would result in an unfair comparison to prior works.
DINO as an offline OOD detector. We therefore utilize the self-supervised
DINO [2], which is only trained with ImageNet-1k images without using any
label annotations2. To perform the OOD detection, we fine-tune DINO with
multi-class training and then compute different OOD scores (described below)
to decide whether an object is an ID or an OOD sample. To be more concrete,
the OOD detector is trained as a simple classifier with K + 1 output classes (K
is the number of ID object classes), where the additional node is for the OOD
and novel samples. Unlike prior works [28,12,24] that used a large amount of
2 The backbone of object detectors is usually pretrained on the ImageNet1k classification [42,3],

and both images and ground-truth labels are required for pretraining of the model weights. A
systematic comparison between using DINO and ViT will be discussed in supplementary material.



Open-Set Semi-Supervised Object Detection 9

additional OOD data during training, we do not assume the availability of such
data. We therefore only use the available ID labeled data and propose to regard
the background proposal patches as the OOD samples. Specifically, we crop the
image patches according to the ground-truth boxes, and the background patches
are randomly sampled from the proposal boxes labeled with the low IoU to the
ground-truth boxes. We compute the OOD detection loss Lood with the cross-
entropy which enforces the ID patches as the corresponding ID foreground labels
and enforces the background patches as the OOD class. While it is sub-optimal
to use background instances as OOD class, they still provide sufficient negative
gradients for distinguishing the ID objects when the novel OOD objects are not
available in the labeled set.

After the fine-tuning of the DINO model, we freeze the DINO model and
experiment the following common scores for OOD detection:
1. Mahalanobis Distance [21]:

γood = max
k
−(f(x)− µ̃k)

⊺Σ̃−1(f(x)− µ̃k). (2)

where f(x) represents the DINO intermediate feature vector of patch x, µ̃k is
the estimated mean vector of class k, and Σ̃ is the estimated covariance matrix.
Both µ̃k and Σ̃ are estimated by using the available labeled data.
2. Inverse Abstaining Confidence [28,40]:

γood = 1− p̃K+1, (3)

where p̃K+1 is the prediction confidence of K + 1-th class (i.e., abstention class)
from the DINO classifier.
3. Energy Score [24]:

γood = −T log

K∑
i

efi(x)/T , (4)

where T is the temperature value, K is the number of classes, fi(x) represents the
i-th index of the logit corresponding to the class i. We also consider Shannon
Entropy and Euclidean Distance for the OOD scores. To decide whether an
object is an ID or OOD class, we set a threshold δood on the OOD score, and the
objects with OOD scores lower than the threshold are regarded as OOD samples.
Integration with Semi-Supervised Object Detection. With the goal of
filtering the OOD objects in pseudo-labels, we integrate the trained OOD detector
with the SSOD method by inserting the OOD filtering after the confidence thresh-
olding as shown in Figure 4. In other words, the pseudo-boxes are derived by
sequentially applying both confidence thresholding and OOD filtering on predicted
boxes from Teacher model, and they are then used to compute the unsupervised
loss defined in Eq. 3 to train the Student. Note that our OOD detector is comple-
mentary to the existing semi-supervised object detection works [37,49,25,51] and
can also be combined with these SSOD methods to address the open-set issue.
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5 Experiments

5.1 Experimental Setting and Datasets

COCO-Open. COCO2017-train contains 117k images with box-level labels from
80 object categories. We randomly sample 20/40/60 classes as the ID classes
and the remaining classes as the OOD classes. Specifically, since each image
contains multiple objects, COCO2017-train is divided into the pure-ID, mixed,
and pure-OOD image sets. Each image in the pure-ID set has at least one ID
object and no OOD object, and each image in the pure-OOD set has at least
one OOD object and no ID object. As for the mixed set, each image has at least
one ID object and at least one OOD object. To make sure that OOD objects are
not in the labeled set, we randomly sample the pure-ID images as a labeled set
and the remaining data as the unlabeled set. Thus, the unlabeled set contains
images from the pure-ID, pure-OOD, and mixed sets.
COCO-OpenImages. To examine all methods in a large-scale OSSOD experi-
ment, we use COCO2017-train as the labeled set and OpenImagesv5 [19] as the
unlableed set. OpenImagesv5 contains 1.7M images with 601 object categories,
and most object categories do not exist in COCO (and are hence OOD).

We also include more experiments in the supplementary material.

5.2 Comparison between online and offline OOD detection

We first present a comparison between online and offline detectors on OOD detec-
tion tasks (object detection results shown in Section 5.3), and we evaluate them
with the standard OOD detection metrics, including area under the ROC curve
(AUROC) and false-positive rate under the true-false rate with x% (FPR@TNRx).
We consider several OOD detection methods [11,21,24,12,34,34,14,41]3. For a
fair and thorough comparison, we adapt these methods from image classification
to object detection tasks and implement them in a unified framework with the
same implementation details such as batch size and optimization. To better
understand the efficacy of each OOD method and prevent the interference of
pseudo-labeling from affecting the performance, we do not use the pseudo-labels
of unlabeled data and only use the available labeled data to train all OOD
detectors (adding pseudo-labels worsen online OOD detection methods as we
discussed in Section 4.2).

As presented in Table 1, we list our observations as follows,
1) offline OOD detectors are significantly better than online OOD detectors

on all evaluation metrics, and this trend also supports that the disentanglement
between OOD detector and object detector can alleviate the interference between
OOD detection and object detection. It is worth repeating that the feature
backbone of Faster-RCNN is pretrained on ImageNet1k with label annotations,
so the superiority of the DINO on OOD detection does not come from using extra
3 As the problem setting of GODIN [14] and GSD [41] is OOD detection without OOD samples,

we adapt them to our setup and enhance the performance by using an linear classifier to predict
background samples.
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Table 1. Evaluation of OOD detection for object detection. We sample 20 classes from
COCO as ID objects, and 4k pure-ID images are selected as labeled images.

OOD Models Methods OoD Scores γood AUROC↑ FPR75↓ FPR95↓

Online

(ROIhead)

Vanilla

MSP [11] 67.0 58.4 92.3

Energy [24] 75.5 36.8 83.6

Entropy 75.9 38.5 83.1

Mahalanobis [21] 50.2 83.0 98.1

Euclidean 56.3 74.3 96.1

OE [12] MSP 67.0 55.0 89.1

OVA [34] MSP 73.0 45.7 90.0

GODIN [14] Cosine h(x) 77.8 33.8 77.4

GSD [41] Feat. angle 78.7 32.1 73.9

Offline

(DINO)
Ours

IAC [40] 83.6 22.4 61.7

Energy 89.6 12.2 47.5

Entropy 88.9 12.6 51.1

Mahalanobis [21] 81.8 25.6 57.6

Euclidean 90.8 10.7 38.6

images and labels. In addition, as mentioned in Section 4.3, another merit of the
offline OOD detector is its robustness to the instability to pseudo-labeling used
in SSOD due to the isolated training of OOD detectors and object detectors.

2) Among the OOD scores used in offline detectors, simply applying the
Euclidean distance performs the bests on all metrics. The popular Mahalanobis
distance cannot lead to satisfactory results due to the inaccurate covariance
matrix estimated limited amounts of labeled data.

Additionally, in the supplementary material, we also list other in-depth
analyses and discussions on OOD detection, including using supervised ViT-B
as an offline OOD detector, and other offline OOD detection methods with
different ID/OOD class splits and different degrees of supervision. Owing to the
superior performance on OOD detection, we apply the offline OOD detectors in
the following OSSOD experiments.

5.3 Experiments on Open-set Semi-Supervised Object Detection

In addition to the OOD detection performance shown in the previous section, we
further advance to OSSOD tasks and assess the object detection performance
under different OSSOD conditions, including different combinations of unlabeled
sets, varying numbers of ID classes, different degrees of supervision, and larger-
scale OSSOD tasks (COCO-additional and COCO-GOI).
Effect of different combinations of unlabeled sets. We experiment with
the existing SSOD method (UT [25]) and our proposed OOD detectors by using
different combinations of unlabeled data, including the pure-ID, the mixed, and
the pure-OOD sets. The purpose of this experiment is to verify the existence of
open-set issue/semantic expansion and investigate whether the OOD samples
affect the SSOD methods.
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Fig. 6. Using more unlabeled images containing
OOD objects (i.e., Mix and OOD) cannot lead to
a better result for UT, while applying our OOD
filtering can alleviate the performance drop and
improve the accuracy. We experiment on COCO-
open with 4k images from 40 ID classes.

Table 2. Mean average precision of COCO-Open when varying the number of ID
objects. We experiment on COCO-Open with 4k labeled images from 20/40/60 ID
classes. We run each method 3 times and report the standard deviation.

Num. of ID/OOD objects 20/60 40/40 60/20

Label-only 16.89±2.6 15.98±0.49 16.64±0.59

UT 18.37±1.67 (+1.48) 20.28±0.85 (+4.29) 23.09±0.25 (+6.45)

UT + OF-DINO 23.43±2.19 (+6.54) 22.91±0.28 (+6.93) 24.89±0.34 (+8.25)

As shown in Figure 6, UT achieves 22.10 mAP when the pure-ID images are
used in the unlabeled set, while the performance drops when the mixed and pure-
OOD sets, containing OOD objects, are added. This shows that OOD objects in
the unlabeled set do affect the effectiveness of the existing SS-OD method, and
the trend is also contrary to the common belief that semi-supervised methods can
derive more performance gains by using more unlabeled data. Therefore, with
our proposed OOD filtering (OF-DINO), the performance of the object detector
does not degrade but instead improves by using the mixed set, and this reflects
the importance of eliminating the detrimental effect of OOD objects.
Varying numbers of ID classes. We also experiment by varying the number of
ID classes in COCO-Open, and we first find that UT shows less performance gain
against label-only baseline when there are fewer ID classes (see Table 2). This is
because the semantic expansion/open-set issue becomes more severe when more
OOD objects appear in the unlabeled set, and such an issue can be alleviated by
the OOD filtering. With the OOD filtering, we can obtain a larger improvement
gain against UT, and it improves 6.54 mAP against the labeled-only baseline
and 5.06 mAP against UT in the case of 20 ID classes. This verifies the efficacy
of the OOD filtering using the different number of ID/OOD classes.
Different degrees of supervision. In addition, we consider varying the number
of labeled images in COCO-Open as shown in Table 3, and we find that using
the OOD detector can also consistently improve against the label-only baseline
and UT under different numbers of labeled images. When fewer labeled images
are used, we could obtain more improvement gain by filtering OOD samples.
Analysis on pseudo-labels. To better understand how our OOD detector
helps the learning of the SSOD method in the open-set condition, we use the
ground-truth labels to measure the number of ID/OOD boxes in pseudo-labels
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Table 3. Mean average precision of COCO-open under different degree of supervi-
sion. We experiment on COCO-Open with 1/2/4k labeled images from 20 selected ID
classes. We run each method 3 times and report the standard deviation.

Num. of Labeled Images 1,000 2,000 4,000

Label-only 10.20± 0.34 11.84± 0.33 16.35± 0.28

UT 11.77±0.38 (+1.57) 13.87±0.68 (+2.03) 18.23±0.47 (+1.88)

UT + OF-DINO 16.80±0.53 (+6.60) 18.10±0.71 (+6.26) 22.56±0.51 (+6.21)

(a) (b) (c)

Fig. 7. Using OOD detector can (a) suppress the OOD objects while (b) maintain the
ID objects in pseudo-labels, and this leads to (c) the improvement on OSSOD. We
experiment on COCO-Open with 500 labeled images from 20 ID classes.

(note that we only use ground-truth labels for the analysis and do not use them
in the training). As illustrated in Figure 7, our OOD detector can effectively
suppress OOD objects in pseudo-labels without sacrificing the ID objects, and
thus this alleviates the semantic expansion issue mentioned in Section 4.1 and
leads to improvement for the OSSOD task.
COCO-GOI. We also consider a more challenging experiment, where we use unla-
beled OpenImagesv5 to improve the object detector trained on COCO2017-train.
Although OpenImagesv5 is substantially larger than COCO datasets, the object
categories in OpenImagesv5 (601 classes) are more diverse than the object cate-
gories in MSCOCO (80 classes). This implies there are more distracting OOD
objects that can affect the performance of existing SSOD methods. In addition to
UT, we also consider a fully-supervised baseline, which uses ground-truth labels
from both COCO2017-train and OpenImagesv5 to train an object detector. To
be more specific, we first manually label the correspondence between 601 classes
in OpenImagesv5 and 80 classes in COCO2017-train, and we only use labels of
80 COCO-classes in OpenImagesv5. We present the details of the correspondence
in our supplementary material.

As presented in Table 4, with our OOD filtering mechanism (DINO) we can
improve UT from 41.81 mAP to 43.14 mAP. Another interesting result is that
our framework can perform even better than the model with the ground-truth
labels from OpenImages, and this indicates that using pseudo-labels generated
from our framework might be more effective than the ground-truth labels pro-
vided in OpenImages. This is potentially caused by noisy labels from human
annotations. In addition, we also find that some COCO object categories are rare
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Table 4. Experimental results of COCO-OpenImages.

Methods Labeled Unlabeled mAP

Fully-supervised COCO - 40.90

Fully-supervised COCO+OpenImage - 42.91

Unbiased Teacher [25] COCO OpenImage 41.81

Unbiased Teacher+OF-DINO COCO OpenImage 43.14

in OpenImages, and this potentially limits further improvements by exploiting
OpenImages as an unlabeled set (more discussion in the supplementary material).
Limitations and future works. While addressing OSSOD, we do not address
other issues such as covariate shift and mismatch in object category distributions
between datasets. The offline OOD detector is an individual module from the
object detector, so it requires more computational resources in the training stage.
However, this concern does not exist as we remove the offline OOD detector
and only use the object detector in the inference stage. Our key message is that
combining an offline OOD detection module and an SSOD method is a simple yet
effective solution to address OSSOD tasks. Based on this integrated framework,
there will be more advanced techniques for both SSOD and OOD detection
methods, which can potentially improve the performance on OSSOD tasks.

6 Conclusion

Unlike traditional closed-set Semi-Supervised Object Detection, where the ma-
jority of the unlabeled images are from in-distribution datasets, we aim to train
object detector with unconstrained unlabeled images – Open-Set Semi-Supervised
Object Detection (OSSOD). In our proposed setting, unlabeled training images
can contain object classes that are out-of-distribution, i.e., classes not included in
the labeled set. To the best of our knowledge, this is the first work investigating
OSSOD. We present comprehensive studies to understand the challenges for
OSSOD and analyze why the performance of existing SoTA methods degrade
even when trained with more unlabeled images. To overcome the challenges,
we consider both online and offline OOD detectors and show that a simple yet
effective offline OOD detector can further improve the SSOD models when train-
ing with large-scale unlabeled datasets, e.g., COCO-OpenImage. We achieved
state-of-the-art results across existing and new benchmark settings, and some
interesting directions such as more accurate and efficient OOD detectors are
worth exploring for future research.
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1 COCO-additional.

To examine OOD filtering in a large-scale scenario, we consider COCO-additional
which aims to improve the fully-supervised object detector with the additional
large-scale dataset (e.g., COCO2017-unlabeled). As presented in Table 3, UT
(with data augmentation from SoftTeacher [20]) can achieve 44.06 mAP, and
using the proposed OOD filtering can further improve UT and achieve 45.14 mAP
and shows state-of-the-art result against the existing SS-OD works [18,22,9,17,20]
on COCO-additional. This demonstrates that removing OOD objects from the
large-scale unlabeled data can still improve the existing SSOD framework. How-
ever, it is worth noting that our proposed OOD filtering mechanism is not
restricted to UT, and we believe that is also complementary to other SSOD
methods [15,18,22,9,17,20].

2 Qualitative Results with the OOD filtering

Fig. 1. Comparison between the pseudo-labels with and without DINO-based
OOD filtering (OF-DINO).

To show the effectiveness of the OOD filtering, we show the pseudo-labels
generated with and without OOD filtering in Figure 1. Without the OOD
filtering, some OOD objects (e.g., fish) are predicted as inlier (e.g., bird) with
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high confidence. Such an issue is alleviated by the OOD filtering, which effectively
suppresses the OOD objects in pseudo-labels and thus improves the accuracy of
the object detector.

3 Experiment results when using ViT-B as OOD detector

To understand how the ViT-B pretrained on ImageNet21k performs on OSSOD
tasks, we examine the ViT-B model on the experiment setups presented in the
main paper. Specifically, we consider different degrees of supervision in Table 1,
different numbers of ID objects in Table 2, large-scale SSOD setting (e.g., COCO-
additional) in Table 3, large-scale OSSOD setting (e.g., COCO-OpenImage) in
Table 4. We observe using the ViT-B model can consistently lead to better results
in all experiment scenarios, while, as we mentioned in the main paper, ViT-B
requires large-scale supervised pre-training dataset (ImageNet21k), which is not
suitable for our label-efficient settings. However, it does demonstrate that the
method can scale with larger-scale pre-trained models, including when using
in-the-wild unlabeled data (e.g. OpenImages).

Table 1. Mean average precision of COCO-open under different degrees of supervi-
sion. We first pre-select 20 COCO classes as ID classes and 60 COCO classes as OOD
classes, and 1/2/4k images are randomly selected from the purely-ID set as the labeled
set. The remaining images from pure-ID, pure-OOD, and mixed sets are used as the
unlabeled set. We run each method 3 times and report the standard deviation.

Num. of Labeled Images 1,000 2,000 4,000

Label-only 10.20± 0.34 11.84± 0.33 16.35± 0.28

UT 11.77±0.38 (+1.57) 13.87±0.68 (+2.03) 18.23±0.47 (+1.88)

UT + OF-DINO 16.80±0.53 (+6.60) 18.10±0.71 (+6.26) 22.56±0.51 (+6.21)

UT + OF-ViT 17.10±0.46 (+6.90) 19.32±0.53 (+7.48) 23.01±0.67 (+6.66)

Table 2. Mean average precision of COCO-Open when varying the number of ID
objects. We first randomly sample 20/40/60 COCO classes as ID classes and remaining
COCO classes as OOD classes, and 4k images are randomly selected from the purely-ID
set as the labeled set. The remaining images from pure-ID, pure-OOD, and mixed sets
are used as the unlabeled set. We run each method 3 times and report the standard
deviation.

Num. of ID/OOD objects 20/60 40/40 60/20

Label-only 16.89±2.6 15.98±0.49 16.64±0.59

UT 18.37±1.67 (+1.48) 20.28±0.85 (+4.29) 23.09±0.25 (+6.45)

UT + OF-DINO 23.43±2.19 (+6.54) 22.91±0.28 (+6.93) 24.89±0.34 (+8.25)

UT + OF-ViT 25.20±2.00 (+8.31) 25.10±1.01 (+9.12) 26.11±0.40 (+9.47)
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Table 3. Comparison to other SSOD
methods in COCO-additional.

mAP

Supervised 40.90

Proposal Learning [17] 38.40
CSD [9] 38.82

STAC [15] 39.21
Instant-Teaching [22] 40.20

MOCOv2 + Instagram-1B [18] 41.10
Humble Teacher [18] 42.37

SoftTeacher [20] 44.05
Unbiased Teacher* [13] 44.06

Unbiased Teacher* + OF-DINO 45.14

Unbiased Teacher* + OF-ViT 45.16

Table 4. Experimental results of COCO-
OpenImage.

OpenImage GT labels mAP

COCO 40.90
COCO + OpenImage ✓ 42.91

Unbiased Teacher [13] 41.81
Unbiased Teacher + OF-DINO 43.14

Unbiased Teacher + OF-ViT 43.48

4 Experiments on STAC

Table 5. Generalization of our findings to other methods, namely STAC [15]
performance comparison between closed-set SSOD and open-set SSOD. For
closed-set SSOD, we randomly select 1%/2% from the training set (i.e., 1172/2234
labeled images). For the open-set SSOD, we randomly samples 20 classes as ID classes
and the remaining classes as OOD classes; hence the differences in performance of
“Labeled only”. We then sample the same amount of labeled images in both cases for a
fair comparison.

closed-set SSOD open-set SSOD

Percentage of labeled images 1% 2% 1% 2%
Num. of labeled images 1,172 2,344 1,172 2,344

Labeled only 9.05 12.70 11.20 12.18
STAC [15] 13.97 18.25 13.22 15.34

∆ +4.92 +5.55 +2.02 +3.16

In addition to Unbiased Teacher [13] experimented with in the main paper,
we also consider another SSOD method, STAC [15], to show that our findings are
general. As shown in Table 5, we observe STAC also suffers from open-set issues
when experimenting on OSSOD tasks. Compared with the traditional closed-set
SSOD task, the performance gain of STAC is smaller in open-set conditions.

To address the open-set issues, we also apply our proposed OOD detection
method on STAC. As presented in Table 6, when the OOD detector (DINO) is
applied, we can improve STAC from 18.60 mAP to 19.80 mAP. This shows that
our proposed OOD filtering method is not restricted to any particular SSOD
method and can potentially improve other SSOD methods.

Furthermore, similar to Unbiased Teacher [13], other existing SSOD meth-
ods [18,22,21,20] also applied confidence thresholding to select pseudo-labels, so
they are also prone to suffer from the semantic expansion issue as we described
in the main paper.
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Table 6. OOD filtering improves STAC on COCO-Open. We randomly sample
40 COCO classes as ID classes and remaining COCO classes as OOD classes, and 4k
images are randomly selected from the purely-ID set as the labeled set. The remaining
images from pure-ID, pure-OOD, and mixed sets are used as the unlabeled set.

Label-only STAC STAC + OF-DINO

mAP 16.54 18.60 (+2.06) 19.80 (+3.26)

5 Complete Comparison of OOD Detection

Table 7. Evaluation of OOD detection for object detection tasks. We sample 20 classes
from COCO as in-distribution (ID) objects, and 4000 pure-ID images are selected as
labeled images. All methods are evaluated on COCO2017-val. Value before the slashes
indicates ignoring background patches when computing AUROC and FPR, and value
after the slashes regradining background patches as OOD objects when computing
AUROC and FPR.

Model Methods OoD Scores γood AUROC ↑ FPR50↓ FPR75↓ FPR95↓

Online OOD Detector

(Faster-RCNN branch)

Vanilla

MSP [5] 67.0 / 71.0 22.5 / 15.5 58.4 / 52.4 92.3 / 91.1

Energy [12] 75.5 / 68.2 13.2 / 22.8 36.8 / 49.0 83.6 / 87.8

Entropy 75.9 / 68.4 12.2 / 22.3 38.5 / 51.1 83.1 / 87.7

Mahalanobis [10] 50.2 / 61.6 51.5 / 32.8 83.0 / 65.7 98.1 / 93.7

Euclidean 56.3 / 61.5 40.2 / 31.8 74.3 / 66.9 96.1 / 94.1

OE [6] MSP 67.0 / 73.3 25.3 / 15.2 55.0 / 45.9 89.1 / 85.6

One-vs-all [14] MSP 73.0 / 76.0 13.4 / 10.7 45.7 / 40.2 90.0 / 84.8

GODIN [7] Cosine h(x) 77.8 / 73.5 12.5 / 14.6 33.8 / 45.0 77.4 / 84.5

GSD [19] Feat. angle 78.7 / 71.3 11.8 / 19.3 32.1 / 48.8 73.9 / 83.4

Offline OOD Detector

(DINO)
Ours

Inv. abstaining conf. 83.6 / 86.0 8.5 / 5.9 22.4 / 18.7 61.7 / 57.9

Energy 89.6 / 85.9 4.0 / 7.0 12.2 / 18.8 47.5 / 56.8

Entropy 88.9 / 84.7 3.5 / 7.3 12.6 / 20.3 51.1 / 59.9

Mahalanobis [10] 81.8 / 75.7 11.7 / 17.6 25.6 / 35.9 57.6 / 68.9

Euclidean 90.8 / 86.1 3.6 / 7.3 10.7 / 18.5 38.6 / 51.6

Offline OOD Detector

(ViT)
Ours

Inv. abstaining conf. 87.5 / 88.2 4.5 / 4.0 15.3 / 14.7 54.7 / 51.5

Energy 93.3 / 88.5 2.1 / 5.9 6.0 / 14.5 32.4 / 45.3

Entropy 93.2 / 88.1 1.5 / 5.8 5.9 / 15.1 33.9 / 46.3

Feat. angle 93.2 / 87.6 2.1 / 7.2 6.1 / 15.5 33.4 / 46.0.

To compare OOD detection methods, we list a more complete comparison as
presented in Table 7. We list other observations as follows:
Mahalanobis Distance under limited amount of data setting With limited
amount of training data (i.e., 4k ID images), Mahalanobis distance becomes
unreliable compared with other OOD metrics, and this is contrary to the prior
works on OOD detection [4,10], where a large amount of data is used for training
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Fig. 2. Comparison of OOD metrics of OF-DINO under different number of ID classes,
and we present (a) AUROC and (b) FPR@TNR75 to evaluate the performance of the
OOD detection. Among different OOD metrics, inverse abstaining confidence (IAC)
suffers less when the number of ID classes increases. Note that 20/40/60 classes from the
COCO2017-train are selected as ID classes (and the remaining classes as OOD classes),
and 4k images of pure-ID set are selected as the labeled set.

the OOD detectors. As computing Mahalanobis distance requires the covariance
matrix and the class-wise mean vectors, and estimating the covariance matrix
for high-dimension features is difficult and inaccurate, this is even more difficult
when the data is scarce (especially when the number of instances is closer to or
even less than the number of feature dimensions). This is also why we observe
that Euclidean distance, which is equivalent to the Mahalanbois distance with the
identity convariance matrix, leads to even better results than the Mahalanobis
distance.

Another weakness of Mahalanobis distance is that it requires one to obtain
class-wise mean and co-variance features by deriving the features for all ID images
in the labeled set, so it is computationally slow (also pointed out in MOS [8])
and thus less preferable for large-scale open-set semi-supervised learning, which
requires detecting OOD samples in each training iteration.
Inverse abstaining confidence under different number of ID/OOD
classes. Compared with other offline OOD detection metrics, using inverse
abstaining confidence is more robust when varying the number of ID classes. To
be more specific, as shown in Table 7, the Energy score and Shannon entropy
perform on par or even better than the inverse abstaining confidence in the
case of using 20 ID classes. However, as shown in Figure 2, when we increase
the number of ID classes, the inverse abstaining confidence degrades much less
than the Energy score and Shannon entropy. Such a property makes the inverse
abstaining confidence more suitable for different OSSOD scenarios.

6 Comparison between COCO-OpenImage and
COCO-additional

In the main paper, we considered two large-scale unlabeled sets, OpenImagev5
and COCO2017-unlabeled, to improve the object detection trained on the labeled
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(b)

(a)

Fig. 3. (a) Distribution of object categories and (b) number of objects in
COCO2017-train and OpenImagev5.

COCO2017-labeled. Our OOD filtering framework improves the supervised object
detector from 40.90 mAP to 43.14 mAP by using OpenImagev5 as an unlabeled set
and achieves 45.14 mAP when the COCO2017-unlabeled is used as an unlabeled
set.

As OpenImagev5 has more unlabeled images than COCO2017-unlabeled (1.7M
vs. 120k), we are curious why the model using the OpenImagev5 as an unlabeled
set cannot outperform the model using the COCO-unlabeled as an unlabeled set.

We attribute this trend to the following factors:
(i) Mismatch in class distribution. We first compare the class distribution

of both datasets, and we find these two datasets have very different object
distributions as shown in Figure 3a. The mismatch in the class distribution in the
unlabeled set is prone to affect the frequency or confidence of objects predicted
for the evaluation set, and this potentially leads to performance degradation in
the evaluation set.

(ii) Some COCO objects are rare in OpenImage. When OpenImagev5
is used as an unlabeled set to train the object detector in a semi-supervised
manner, we observe, as shown in Table 8, the performance on some objects



Open-Set Semi-Supervised Object Detection Supplementary Materials 7

Table 8. Performance degradation of minor objects in semi-supervised learn-
ing. We apply Unbiased Teacher with the proposed OOD filtering (DINO) and use the
OpenImagev5 as an unlabeled set, and detection performance of some rare objects are
degraded due to the scarcity of these objects in OpenImagev5. Note that OpenImagev5
contains 1.7M images, and COCO2017-train has 117k images.

Objects
Supervised-only

Labeled: COCO2017-train

-

UT+OF-DINO
Labeled: COCO2017-train

Unlabeled: OpenImagev5

mAP difference
Number of boxes in

COCO2017-train

Number of boxes in

OpenImagev5

sheep 51.81 51.49 -0.33 1529 1188

carrot 22.52 22.34 -0.18 1683 594

hair drier 2.59 1.53 -1.06 189 27

zebra 66.63 65.99 -0.63 1916 621

snowboard 35.48 33.90 -1.57 1654 574

knife 19.60 19.45 -0.15 4326 726

banana 23.56 23.08 -0.48 2243 723

orange 32.29 31.38 -0.91 1699 900

hot dog 32.23 31.20 -1.03 1222 362

toaster 40.40 34.28 -6.13 217 60

giraffe 68.41 68.04 -0.37 2546 920

tennis racket 49.31 49.10 -0.22 3394 1047

microwave 54.14 53.75 -0.40 1547 432

are even lower than the supervised model due to the scarcity of these objects.
Specifically, even though OpenImagev5 has more images than COCO2017-train,
the number of some COCO objects in entire OpenImage are even fewer than the
objects in COCO2017-train, as shown in Figure 3b. This suggests the objects
are very rare and infrequently appear, and such a property potentially limits the
further improvement by using OpenImagev5. Note that COCO2017-unlabeled
follows the same class distribution as COCO2017-labeled (described in COCO
official page), and both datasets have similar amount of images (120k vs. 117k).

7 Label Correspondence between COCO and OpenImage

To construct the baseline trained with ground-truth labels from OpenImage, we
manually label the correspondence between 80 classes in MS-COCO and 601 classes
in OpenImage. We provide the object correspondence in Table 9. Among 601
classes in OpenImage, 139 GOI classes have matching COCO classes, and the
remaining 462 classes do not correspond to any COCO classes. We thus remove
the labels of these classes in the training of the supervised baseline.

8 Implementation Details

Our implementation is based on the Detectron2 framework. As our framework
is built on the Unbiased Teacher [13], we follow its implementation details,
including training iterations, threshold, unsupervised loss weight, and other
hyper-parameters for a fair comparison.
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Table 9. Object classes correspondence between MS-COCO and OpenImages. 139 Open-
Images objects have the matching COCO objects, while the remaining 462 OpenImage
objects do not correspond to any COCO object.

COCO-objects OpenImage-objects COCO-objects OpenImage-objects

person Person, Boy, Woman, Man, Girl wine glass Wine glass

bicycle Bicycle cup Coffee cup, Measuring cup, Mug

car Car, Ambulance, Limousine, Taxi fork Fork

motorcycle Motorcycle knife Knife, Kitchen knife

airplane Airplane spoon Spoon, Ladle

bus Bus bowl Mixing bowl, Bowl

train Train banana Banana

truck Truck, Van apple Apple

boat Boat, Barge, Gondola, Canoe sandwich Submarine sandwich, Sandwich

traffic light Traffic light orange Orange

fire hydrant Fire hydrant broccoli Broccoli

stop sign Stop sign carrot Carrot

parking meter Parking meter hot dog Hot dog

bench Bench pizza Pizza

cat Cat cake Cake

dog Dog chair Chair

horse Horse couch Studio couch, Couch, Sofa bed, Loveseat

sheep Sheep potted plant Lavender (Plant), Plant, Houseplant, Flowerpot

cow Cattle, Bull bed Bed

elephant Elephant dining table Kitchen & dining room table, Table, Coffee table

bear Bear, Brown bear, Panda, Polar bear toilet Toilet, Bidet

zebra Zebra tv Computer monitor, Television

giraffe Giraffe laptop Laptop

backpack Backpack mouse Computer mouse

umbrella Umbrella remote Remote control

handbag Handbag keyboard Computer keyboard

tie Tie cell phone Mobile phone

suitcase Suitcase microwave Microwave oven

frisbee Flying disc oven Oven, Gas stove

skis Ski toaster Toaster

snowboard Snowboard sink Sink

donut Doughnut refrigerator Refrigerator

kite Kite book Book

baseball bat Baseball bat clock Wall clock, Clock, Alarm clock, Digital clock, Watch

baseball glove Baseball glove vase Vase

skateboard Skateboard scissors Scissors

surfboard Surfboard teddy bear Teddy bear

tennis racket Tennis racket, Racket hair drier Hair dryer

bottle Beer, Bottle, Wine toothbrush Toothbrush

bird
Bird, Magpie, Woodpecker, Blue jay, Raven, Eagle,

sports ball
Rugby ball, Football, Ball, Cricket ball,

Falcon, Owl, Duck, Canary, Goose, Swan, Parrot, Sparrow Volleyball (Ball), Golf ball, Tennis ball

Model Architecture. We experiment on the Faster-RCNN with FPN [11],
and ResNet-50 pretrained on ImageNet-1K is used as the feature backbone. For
the offline OOD detectors, we consider DINO [1] and VITB [3] as base models.

Training. For the object detectors, we use the SGD optimizer with a mo-
mentum rate 0.9 and a learning rate 0.01, and we use a constant learning
rate scheduler for COCO-Open and learning rate decay for COCO-additional
and COCO-OpenImage. Each batch contains 8 labeled images and 8 unlabeled
images for COCO-Open, and 32 labeled images and 32 unlabeled images for
COCO-OpenImage and COCO-additional. To fine-tune DINO/VITB models, we
randomly select 64 patches from each image and train 10k/20k/40k iterations
for 1k/2k/4k labeled images setups of COCO-Open. For COCO-additional and
COCO-OpenImage, we also randomly select 64 patches from each image and
train for 160k iterations. We follow the prior work [16] to use SGD optimizer
with a learning rate 1e− 3 and 5e− 3 for DINO and VIT models. We apply the
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inverse abstaining confidence as the OOD score due to its robustness to different
number of object categories. As for thresholds for confidence thresholding and
OOD filtering, we use δ = 0.5 for the confidence thresholding and δood = 0.5 for
the OOD filtering.

Data augmentation. For COCO-Open, We follow the data augmentation
used in Unbiased Teacher [13], which applies a random horizontal flip for weak
augmentation and randomly adds color jittering, grayscale, Gaussian blur, and
cutout patches [2] for the strong augmentation. For COCO-additional and COCO-
OpenImage, we additionally consider scale jitter used in SoftTeacher [20] to further
improve the performance. Image-level or box-level geometric augmentations, such
as rotation, translation, and Mosaic [22], are not used in our method.

9 Training of our online and offline frameworks

In the main paper, we present our proposed OSSOD framework integrated with
online and offline OOD detectors. We thus present the training details of offline
OOD detectors in Alg. 1 and online OOD detectors in Alg. 2.

Algorithm 1: Learning of an offline OOD Detector and UT [13]
Data: Labeled set: Ds = {xs, ys}; Unlabeled set: Du = {xu}

1 for Iters. of supervised training an object detector do
2 Compute supervised object detector loss Lsup with Ds

3 θsobj ← θsobj −∇θs
obj
Lsup

4 θtobj ← θsobj
5 for Iters. of training an offline OOD detector do
6 Get background proposal boxes ỹt from Teacher object detector
7 Select foreground GT boxes from ys and crop Ifg from xs

8 Select background proposal boxes from ỹt and crop Ibg from xs

9 Compute multi-class cross-entropy loss Lood based on {Ibg, Ifg}
10 θood ← θood −∇θoodLood

11 for Iters. of semi-supervised training of an object detector do
12 Predict ỹu = f(xu; θt)
13 Apply confidence thresholding ŷu ← h(ỹu; δ)
14 Apply OOD filtering ȳu ← h(ŷu; δood)
15 Compute unsupervised object detector loss Lunsup with {Du, ȳu}
16 Compute supervised object detector loss Lsup with Ds

17 Lssod = Lsup + λLunsup

18 θsobj ← θsobj −∇θs
obj
Lssod

19 θtobj ← αθtobj + (1− α)θsobj

Result: Learned weights θtobj/θ
s
obj of Teacher/Student object detector
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Algorithm 2: Learning of an online OOD Detector and UT [13]
Data: Labeled set: Ds = {xs, ys}; Unlabeled set: Du = {xu}

1 Add an OOD detection head on both Teacher and Student object detectors
2 for Iters. of semi-supervised training of an object detector do
3 Predict ỹu = f(xu; θt)
4 Apply confidence thresholding ŷu ← h(ỹu; δ)
5 Apply OOD filtering ȳu ← h(ŷu; δood)
6 Compute unsupervised object detector loss Lunsup with {Du, ȳu}
7 Compute supervised object detector loss Lsup with Ds

8 Compute OOD loss Lood (Refer to definition in original papers)
9 L = Lsup + λLunsup + λoodLood

10 θsobj ← θsobj −∇θs
obj
L

11 θtobj ← αθtobj + (1− α)θsobj

Result: Learned weights θtobj/θ
s
obj of Teacher/Student object detector

Limitations and future works. While addressing OSSOD, we do not address
other issues such as covariate shift and mismatch in object category distributions
between datasets. The offline OOD detector is an individual module from the
object detector, so it requires more computational resources in the training stage.
However, this concern does not exist as we remove the offline OOD detector
and only use the object detector in the inference stage. Our key message is that
combining an offline OOD detection module and an SSOD method is a simple yet
effective solution to address OSSOD tasks. Based on this integrated framework,
there will be more advanced techniques for both SSOD and OOD detection
methods, which can potentially improve the performance on OSSOD tasks.
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